
(Linux) Containers introduction
WASA: Web and Software Architecture

Enrico Bassetti

WASA • (Linux) Containers introduction • Enrico Bassetti • Sapienza University of Rome 1



Containers



Virtualization technologies

Image courtesy of The Kubernetes Authors / The Linux Foundation - CC BY 4.0

WASA • (Linux) Containers introduction • Enrico Bassetti • Sapienza University of Rome 2



Standard deployment

Standard deployment:

• Processes aware of other processes
• they can interact each other (POSIX signals, shared
mem)

• They share kernel, libraries, filesystem, hardware
• Little to no constraints, limited “supervision”
(restart-on-crash, etc.)

WASA • (Linux) Containers introduction • Enrico Bassetti • Sapienza University of Rome 3



Virtual machines

Virtualization:

• World divided in two roles:
• host is the O.S. running on real hardware
• guest is the O.S. running in the virtual machine

• Guest machine instructions are executed/translated by
the hypervisor

• Direct hardware access not needed
• guests have “virtual hardware” devices
• but it might be granted if needed

• VMs are isolated: crashes, security incidents, etc. in
guests are not affecting other guests

WASA • (Linux) Containers introduction • Enrico Bassetti • Sapienza University of Rome 4



Containers

Containers:

• World is still divided in:
• host is the O.S. running on real hardware
• containerized process(es) is the process(es) running in
a container

• A container is a set of restrictions placed on syscall
• A container may have one or more processes

• Containerized processes runs on the same kernel of
the host

• Restricted environment
• Filesystem is not shared by default
• processes cannot interact by default
• other restrictions are in place

• Less isolation than the VM:
• a problem in a containers is not affecting other
containers

• a problem in a syscall will affect the whole system

WASA • (Linux) Containers introduction • Enrico Bassetti • Sapienza University of Rome 5



Linux containers



Containers

In general, many operating systems supports containers in
various shapes:

• chroot in most UNIXes (since 1982!)
• FreeBSD jails (2000)
• Solaris Containers/Zones (2000)
• LXC on Linux (2005)
• Docker/Podman on GNU/Linux (2013), Windows and
recently FreeBSD

• macOS is not in this list!

• Other technologies: LXD, vServer, OpenVZ, Virtuozzo,
etc.

WASA • (Linux) Containers introduction • Enrico Bassetti • Sapienza University of Rome 6



Linux containers

In Linux, containers are built over cgroups (v2 currently).
cgroups where designed by Google in 2006, and published
in 2008.

They provide:

• Resource limitings
• limits on CPUs, RAM, filesystem, I/O

• Prioritization
• some processes may have priority

• Accounting
• resource usage measurements (e.g., billing, issue
detection)

• Lifecycle control
• restart on crash, checkpoint, schedule, etc.

WASA • (Linux) Containers introduction • Enrico Bassetti • Sapienza University of Rome 7



Linux containers

Image courtesy of Wikipedia author ScotXW - CC BY 4.0

WASA • (Linux) Containers introduction • Enrico Bassetti • Sapienza University of Rome 8



Namespace isolation

Each container runs in namespaces. A namespace may
contain one or more containers.

Processes/containers that runs in the same namespace can
share their resources with others.

There are different namespaces:

• Process ID (PID)
• Network
• UTS / hostname
• Mount
• IPC
• User
• Cgroup

WASA • (Linux) Containers introduction • Enrico Bassetti • Sapienza University of Rome 9



Bell Labs

Linux namespaces came from Plan 9, which is an
experimental operating system from Bell Labs.

Plan 9 was invented by the same group that developed
UNIX and many programming languages: B, C, and GO!

WASA • (Linux) Containers introduction • Enrico Bassetti • Sapienza University of Rome 10



OCI containers



Docker

Docker (2013) is a set of tool for managing Linux
containers, and, lately, Windows containers.

Docker containers have been standardized under OCI
(Open Container Initiative), and different
implementations exists (e.g., podman).

WASA • (Linux) Containers introduction • Enrico Bassetti • Sapienza University of Rome 11



OCI/Docker glossary

• Container: a Linux containers (or Windows containers
on Windows)

• (Container) Image: an archive with files and
configurations for creating a new container

• Registry: a forge for sharing/storing container images
(e.g., DockerHub)

• Dockerfile/Containerfile: a file that specifies how to
build a container image

• (Docker) compose: a YAML that specifies how to run
a container

• Volume: an external storage space that is mounted
inside the container

• containers may share a volume
• volume are persistent

WASA • (Linux) Containers introduction • Enrico Bassetti • Sapienza University of Rome 12



OCI/Docker container volumes

Docker Container are started from an image. The image
contains the new “root directory” for the container. This
new root will be ephemeral (data will be deleted at exit).

Processes cannot access files outside that root. However,
docker can be instructed to mount an external volume in
a specific path inside the container.

WASA • (Linux) Containers introduction • Enrico Bassetti • Sapienza University of Rome 13



OCI/Docker container images

Container image are built using Dockerfile/Containerfile.
The file contains instructions; each instruction creates a
layer.

Layers contains the difference since previous layers. They
can be cached and reused.

Usually, container images starts from a base image, which
contains some tools. E.g., debian:stable contains a basic
Debian stable system; python:3 contains a basic Python 3
interpreter (with all dependencies!).

WASA • (Linux) Containers introduction • Enrico Bassetti • Sapienza University of Rome 14



OCI/Docker: flow

WASA • (Linux) Containers introduction • Enrico Bassetti • Sapienza University of Rome 15



OCI/Docker: share layers

WASA • (Linux) Containers introduction • Enrico Bassetti • Sapienza University of Rome 16



Containers in the cloud

Once a container is built, it can run on any Linux
platform, regardless of the underlying system (provided
that it supports cgroups and other container-related
technologies).

WASA • (Linux) Containers introduction • Enrico Bassetti • Sapienza University of Rome 17



Run your first container

To run a container with Docker, you can use a simple
command:

docker run -it --rm debian:bullseye

This command creates a new interactive (flag -it)
container using the image debian:bullseye, and remove the
container at exit (flag --rm).

WASA • (Linux) Containers introduction • Enrico Bassetti • Sapienza University of Rome 18


	Containers
	Linux containers
	OCI containers

