Go concurrency

WASA: Web and Software Architecture

Enrico Bassetti

WASA - Go concurrency - Enrico Bassetti - Sapienza University of Rome



Goroutines



A common error

Concurrency is not Parallelism

"Concurrency is about dealing with lots of things at once.
Parallelism is about doing lots of things at once.”

*[...] The goal of concurrency is good structure.”

WASA - Go concurrency - Enrico Bassetti - Sapienza University of Rome



Concurrency in Go

Go makes it simple to create concurrency in programs.

It might execute things in parallel.

WASA - Go concurrency - Enrico Bassetti - Sapienza University of Rome



Concurrency in Go

func main() {
var j = O
for j < 10 {
fmt.Println(j)

]++

WASA - Go concurrency - Enrico Bassetti - Sapienza University of Rome



Concurrency in Go

func main() {
go func() {
vari = 0
for i < 10 {
fmt.Println(i)
{4+
}
10

var j = O
for j < 10 {
fmt.Println(j)
jo+
}
}

WASA - Go concurrency - Enrico Bassetti - Sapienza University of Rome



Channels

func main() {
var channel = make(chan int)
go func() {
vari = O
for i < 10 {
channel <- i
je
}
10
var j = O
for j < 10 {
fmt.Println(<-channel)
jo+
}
}

WASA - Go concurrency - Enrico Bassetti - Sapienza University of Rome



Buffered Channels

func main() {
var channel = make(chan int, 2)
go func() {
vari = O
for i < 10 {
channel <- i
je
}
10
var j = O
for j < 10 {
fmt.Println(<-channel)
jo+
}
}

WASA - Go concurrency - Enrico Bassetti - Sapienza University of Rome



Select

func main() {
var chanl = make(chan int, 2)
var chan2 = make(chan int, 2)
var chan3 = make(chan int, 2)
/..
select {
case vl := <-chanl:
fmt.Printf("Received %v from channel 1\n", v1)
case v2 := <-chan2:
fmt.Printf("Received %v from channel 2\n", v1)
case chan3 <- 1:
fmt.Printf("Sent value to channel 3\n")

default:
fmt.Printf("No one is ready to communicate\n", v1)

}

WASA - Go concurrency - Enrico Bassetti - Sapienza University of Rome



Timeout

func main() {
var chanl = make(chan int, 2)
var timeout = time.After(5 * time.Second)

/] ..
select {
case vl := <-chanl:
fmt.Printf("Received %v from channel 1\n", v1)
case <-timeout:
fmt.Printf("Timeout\n")

WASA - Go concurrency - Enrico Bassetti - Sapienza University of Rome



sync.Mutex

func main() {
var mu sync.Mutex

mu.Lock()
mu.Unlock()

WASA - Go concurrency - Enrico Bassetti - Sapienza University of Rome

10



sync.Mutex

var mu sync.Mutex

var idx int

func Increment() {
mu.Lock()
defer mu.Unlock()

idx++

WASA - Go concurrency - Enrico Bassetti - Sapienza University of Rome

11



Links

- https://go.dev/blog/waza-talk

WASA - Go concurrency - Enrico Bassetti -

Sapienza University of Rome

12



	Goroutines

